24 research outputs found

    Nodal-link semimetals

    Get PDF
    In topological semimetals, the valence band and conduction band meet at zero-dimensional nodal points or one-dimensional nodal rings, which are protected by band topology and symmetries. In this Rapid Communication, we introduce "nodal-link semimetals", which host linked nodal rings in the Brillouin zone. We put forward a general recipe based on the Hopf map for constructing models of nodal-link semimetal. The consequences of nodal ring linking in the Landau levels and Floquet properties are investigated.Comment: 12 pages, 5 figures, including supplemental material. Published versio

    Dufulin Activates HrBP1 to Produce Antiviral Responses in Tobacco

    Get PDF
    BACKGROUND: Dufulin is a new antiviral agent that is highly effective against plant viruses and acts by activating systemic acquired resistance (SAR) in plants. In recent years, it has been used widely to prevent and control tobacco and rice viral diseases in China. However, its targets and mechanism of action are still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Here, differential in-gel electrophoresis (DIGE) and classical two-dimensional electrophoresis (2-DE) techniques were combined with mass spectrometry (MS) to identify the target of Dufulin. More than 40 proteins were found to be differentially expressed (≥1.5 fold or ≤1.5 fold) upon Dufulin treatment in Nicotiana tabacum K(326). Based on annotations in the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, these proteins were found to be related to disease resistance. Directed acyclic graph (DAG) analysis of the various pathways demonstrated harpin binding protein-1 (HrBP1) as the target of action of Dufulin. Additionally, western blotting, semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), and real time PCR analyses were also conducted to identify the specific mechanism of action of Dufulin. Our results show that activation of HrBP1 triggers the salicylic acid (SA) signaling pathway and thereby produces antiviral responses in the plant host. A protective assay based on lesion counting further confirmed the antiviral activity of Dufulin. CONCLUSION: This study identified HrBP1 as a target protein of Dufulin and that Dufulin can activate the SA signaling pathway to induce host plants to generate antiviral responses

    Characterization of the complete chloroplast genome of two Hovenia species (Rhamnaceae)

    No full text
    Hovenia is a small genus comprising approximately three species and occurs naturally in many countries and regions in Asia. In this study, we assembled and characterized the complete chloroplast genome of H. dulcis and H. trichocarpa for the first time. The two Hovenia chloroplasts have closely resembled gene length, content, and order. The circular genomes of H. dulcis and H. trichocarpa were 161,667 and 161,668 bp in total length, respectively, while each exhibited characteristic quadripartite structure with one LSC region of 89,450–89,451 bp, one SSC region of 18,979 bp, separated by a pair of IR regions of 26,619 bp. A total of 104 unique genes were encoded, including 72 protein-coding genes, 28 tRNA genes, and 4 rRNA genes. Further, the phylogenetic analysis showed that three Hovenia species clustered into one well-supported clade and formed a sister to the genus of Ziziphus

    Characterization of the complete chloroplast genome of Hovenia acerba (Rhamnaceae)

    No full text
    Hovenia acerba is a widely distributed species with economic, ornamental, and medicinal value in China. In this study, we assembled and characterized the complete chloroplast genome of H. acerba for the first time. The circular genome has a quadripartite structure with 161,651 bp in length and contains a pair of 26,619 bp inverted repeat (IR) regions, separated by the large single-copy (LSC, 89,443 bp) region and small single-copy (SSC, 18,970 bp) region. The plastid genome harbours 104 unique genes, including 72 protein-coding genes, 28 tRNAs, and four rRNAs. The overall GC content of the whole genome was 36.7%. Further, the phylogenetic analysis showed that H. acerba clustered together with Ziziphus genus. The complete chloroplast genome of H. acerba will provide important information for phylogenetic and evolutionary studies in Rhamnaceae, as well as the other closely related family

    The Effect of Hormone Types, Concentrations, and Treatment Times on the Rooting Traits of <i>Morus</i> ‘Yueshenda 10’ Softwood Cuttings

    No full text
    Enhancing the capacity of fruit trees to propagate via cuttings is an important endeavor for the high-quality development of the fruit industry. Optimizing the conditions for the cutting propagation of mulberry seedlings is an important factor that influences the industrial production of this plant; however, the currently used mulberry breeding technology system is not mature. In this experiment, an orthogonal design was used to intercept semi-woody shoots of Yueshenda 10 as cuttings and set different hormone concentrations (200, 500, 800, and 1000 mg/L), different hormone types (NAA, IBA, IAA, and ABT-1), and different soaking times (10, 30, 60, and 120 min) for cuttings. The effects of the three factors on the rooting of mulberry cuttings were investigated by soaking the cuttings in clean water for 10 min as a control. The results showed that the primary and secondary order of the three factors affecting the rooting rate of cuttings was hormone concentration > hormone type > soaking time, and the concentration of exogenous hormones had a significant impact on all rooting indicators (p < 0.05). In addition, the rooting rate (66.24%), average number of roots (7.54 roots/plant), and rooting effect index (4.23) of Yueshenda 10 cuttings reached the optimal level when soaked with 800 mg/L ABT-1 for 30 min. The longest root length (10.20 cm) and average root length (4.44 cm) of cuttings achieved the best results when soaked with 800 mg/L NAA for 60 min and 500 mg/L NAA for 30 min, respectively. On balance, it is considered that the preferred solution is to soak the cuttings of Yueshenda 10 with 800 mg/L ABT1 solution for 0.5 h

    Physicochemical Response of External Plant Growth Regulator in the Cutting Process of Mulberry

    No full text
    Adventitious roots play a crucial role in the nourishment and propagation of arboreal vegetation. In order to shed light on the physiological and biochemical characteristics of the challenging-to-propagate mulberry tree species, an investigation was conducted. This study aimed to compare the responses of various root morphological indicators, endogenous hormones, and oxidase activities in the “Yueshenda 10” fruit mulberry, at different stages of treatment. The ultimate objective was to identify the factors influencing the process of root development. The findings revealed a distinct ”/\“ pattern in the levels of IAA and JA within the cuttings. Conversely, the changes in ABA, ZR, and GA3 exhibited a ”/\/“ pattern. The fluctuation of the IAA/ABA values followed a ”\/\“ mode, whereas the IAA/ZR values initially increased, followed by a subsequent decrease. The correlation between the initial concentrations of these five endogenous hormones and the rooting rate displayed variations. Notably, IAA demonstrated the strongest association with the rooting rate, exhibiting a positive correlation with both IAA and ZR. Regarding the activity of three antioxidant enzymes (IAAO, POD, and PPO), a ”/\“ trend was observed, wherein the enzyme activity increased under ABT1 treatment. However, the peak activity levels of the enzymes appeared during different periods: callus generation, rooting induction, and adventitious root expression, respectively. Overall, the most effective treatment for promoting root development and significantly enhancing the root growth parameters of mulberry was found to be 800 mg/L ABT1. Exogenous hormone treatment expedited the synthesis of antioxidant enzymes, thereby shortening the rooting time and facilitating root formation

    Pyrolysis molecule of Torreya grandis bark for potential biomedicine

    No full text
    Torreya grandis is a unique tree species in China. Although full use has been made of the timber, the processing and utilization of the bark has not been effective. In order to explore a new way to utilize the bark of Torreya grandis, a powder of T. grandis bark was prepared and analyzed qualitatively and quantitatively. Differential scanning calorimetry (TG) and pyrolysis gas chromatography-mass spectrometry (PY-GC/MS) revealed many bioactive components in the bark of T. grandis, such as acetic acid, 2-methoxy-4-vinyl phenol, D-mannose, and furfural. These substances have potential broad applications in the chemical industry, biomedicine, and food additives. The chemical constituents of the bark of T. grandis suggest a theoretical basis for the future development and utilization of the bark of T. grandis. Keywords: Torreya grandis bark, TG, Py-GC/M
    corecore